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Magnetopolarons in quasi-one-dimensional quantum-well 
wires 
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Departamento de Fisica e Ciacia dos Materiais. Instihito de Fisica e QuimiCa de S o  CGlos, 
Universidade de S2o Paulo, Caixa P o s l  369, 13560-970 S b  CarlosSP, Brazil 

Received 14 January 1993 

Abstract. %e interaction of quasi-one-dimensional electrons and longitudinal optical (w) 
phonons placed in a perpendicular magnetic field is calculated. Rydts  are presented for the 
polamn correction 10 the Landau levels ( N )  and the polaron cydmon mass It is shown that 
under the condition COL > NQ (where WL is the LO phonon frequency, and Ll is the frequency of 
the parabolic confinement potential) level crossing occurs, resulting in aresonant magnetopolaron 
in the vicinity of the cyclotron fresuency ruc = [ ( w L / N ) ~  - n2]'i2. The polaron cyclorron mass 
increases in the vicinity OF this q., It is shown that in a cyclotron resonance experiment it is 
only possible to measure the polaron cyclotron mass if the cyclotron frequency is larger than a 
critical frequency, determined by the confinement potential. 

~ 

1. Introduction 

The polaron mass is usually determined by. a cyclotron resonance experiment. In such 
an experiment the separation of adjacent Landau levels is measured as a function of the 
magnetic field B. In polar semiconductors the Landau levels are modified by polaronic 
effects. Hence, in polar semiconductors the cyclotron resonance frequency = eB/mfc, 
with mfc the polaron cyclotron mass, is affected by ,the interaction of the electrons with the 
optical phonons. Two situations are commonly distinguished in three-dimensional (3D) and 
quasi-two-dimensional (QZD) systems: the non-resonant magnetopolaron in low magnetic 
fields and the resonant magnetopolaron in quantizing magnetic fields when the cyclotron 
energy approximately equals the optical phonon energy. For the 3D and Q2D polaron, 
considerable work has been devoted to the study of the magnetic field dependence of the 
electron-phonon correction to the energy of Landau levels [1-6]. 

Advances in epitaxial growth and in nanometre-scale lithography have made it possible 
to fabricate semiconductor nanostructures which exhibit QID and QOD properties. QID 
quantum-well wires (QWW) and QOD quantum dots (QD) are produced from ~InSb metal- 
oxide semiconductor (MOs) structures and GaAs-Gal,AI,As heterostructnres [7,8]. 

In this paper, we investigate magnetopolarons in QWW. The electror+phonon comt ion  
will be calculated within second-order .perturbation theory for arbitrary magnetic fields. 
Numerical results will be presented f0r;QWW which are produced from InSb MOS structures. 
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2. Theory 

Using the effective mass approximation, the unperturbed system, a single electron in the 
presence of a quantizing perpendicular magnetic field is described by the Hamiltonian 

where we neglect the Zeeman spin-splitting. Assuming the Landau gauge A = ( - yB ,  0.0) 
and a parabolic confinement potential in the y direction, V ( z )  = m,Q2y2/2 + V(z ) ,  we 
have 

(2) 

with the cyclotron frequency wc = e B / m .  and the hybrid frequency Uic = (U: + Q2)1’2. 
Making the ansatz 

-2  2 W Y P ,  + + w c y  + vw H e = - -  P2 
2me 

for the single-particle wavefunction, where L, is the length of the sample in the x direction, 
the Schriidinger equation for the electron motion in the y direction is 

with r?l = m.(&/Q)2 the renormalized mass. We assume that the electron is confined in 
a zero-thickness x-y plane along the z direction at z = 0. Hence, [&)I2  = S(z) is valid. 
The solution of (4) is a shifted harmonic-oscillator wavefunction 

with the centre coordinate Y = y&, $ = fi/(m,&) is the typical width of the 
wavefunction and y = oc/Uic; H N ( ~ )  is the Hermite polynomial. The corresponding 
eigenenergies are 

(6) 

Compared with the three- and two-dimensional case in a perpendicular magnetic field, the 
degeneracy of the Landau levels has been broken by the confinement potential in the y 
direction. In a classical picture, the term fi’k~/zlzfiz arises from the electrons skip along the 
two edges of the wire due to the lateral confinement potential and the Lorentz force. 

Our interest is directed to QWW created via field effect from a heterostructure 17.81. 
Hence, the optical phonons interacting with the electrons are those of the original layered 
semiconductor structure. Neglecting the effects of interface phonons [9,10], the Hamiltonian 
of the electron-phonon interaction Hep including only 3D bulk longitudinal optical (Lo) 
phonons is the standard Friihlich Hamiltonian [ 111. It is 

fi2k: 
EN&) = fr&c(N f f) ‘r 7 2m 

N = 0 , 1 , 2  ,.... 
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I where 

a = --(’ 1 e‘ 
- ;)& 2 4 n ~ r P  em 

the dimensionless 3D polaron coupling constant, r, = (h/2mEoL)’/’ the corresponding 3D 
polaron radius, OL the frequency of the LO phonons and E, and c6 are the high frequency 
(optical) and the static dielectric constant of the semiconductor containing the QOD confined 
electrons, respectively: a ~ ( q )  and aLf(q) are the phonon deshuction and creation operators, 
respectively, q = (qr. 9z) is the 3D wavevector of the 3D bulk LO phonon and V, is the 
volume of the sample. The energy levels of an electron are shifted about AEN(kr) by the 
interaction with the Lo phonons: 

Therefore, a phonon continuum with threshold energy Etb = h u ~  + h&/2 + AEo exists. 
Within second-order perturbation theory the energy shift of the Nth Landau level is given 
by 

where the matrix element is MN’N(q) = (N’, k, - qx; lqlHeplN, k,; Oq}. The ket 
IN, k,: nq) = IN, kx)  @ Inq) describes a state composed of an electron in the Landau level 
N with momentum hk, and n Lo phonons with momentum fig and energy h w ~ .  Because 
we only consider weakly polar semiconductors with CY << 1, i.e. the weak-coupling limit, 
it is sufficient to consider perturbed states containing not more than one Lo phonon. The 
energy dominator in (9) is given by 

h2q: hz 
2 I i i f i  

DN’N = hoL + h&(N’ - N )  + - - -k,9, - A N  

where the value of AN depends on the type of the perturbation theory used [2]: (i) AN = 0 
leads to Rayleigh-Schrodinger perturbation theory (RsPT), (ii) AN = AEN results in the 
Wgner-Brillouin perturbation theory (WBPT) and (iii) A N  = AEN - AEY“ gives an 
improved Wigner-Brillouin perturbation theory (IWBPT), with AE,RSm is the weak-coupling 
electron-phonon correction to the electron ground-state energy calculated within RSm. For 
the ground-state AEAwB” = A/3tS” is valid. Introducing in (9) 3D polaron units (energies 
are measured in units of FIR and lengths are in units of r,) and converting the sum over 
the phonon momentum into an integral, one gets 

with 

Q = -[I - (1 -yZ)ms*(P] 
h2 
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and N I  = m a x ( N .  N’)  and N Z  = min(N, N’) ,  411 = l q l  = (4: + q;)1/2. A’ = &/OL 
and where we have introduced cylindrical coordinates in the qx - qy plane; LF($) is the 
associated Laguem polynomial. The RSPT describes the ground-state correction for wc + 0 
quite well, but it fails for the excited states, since it is possible that the denominator vanishes 
for certain wc. This is true because the energy level ( N ,  kz = 0; nq = 0,) of the state 
I N ,  0 Oq) crosses under the condition o~ > N Q  the energy level (0.0; 1,) of the state 
10,O; In)  at oc = [ ( W / N ) ~  - S Z z ] l / z .  Under the condition a < N Q  there is no level 
crossing. Hence, unlike the 3D and QZD systems where the corresponding level crossing 
occurs at N o c  = OL, independent of the geomeby of the quantum well, for the QID 
parabolic confinement the occurrence of the resonance strongly depends on the confinement 
energy AQ. If resonance occurs, the electron-phonon interaction leads to a splitting of the 
degenerated levels and a pinning to the energy h a + f i G j ~ / 2 + A E , 8 ~ ~ .  The higher energetic 
branch is within the phonon continuum and is not calculated in this paper. Only the IWPT 
gives the correct pinning behaviour in the weak-coupling limit. 

(5,O;Od 
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and (6) as2 = l2meV. The energy levels change their chamcter from subband-like levels 
for B + 0 €,v(k,)lad = hP(N + 1/2) +h2k:/2m, to Landau-like levels for B -+ 00: 
&&)la+, + &w(N + 1/2). Therefore, for B + 00 each Landau level is degenerate 
(without spin degeneracy) according to the degeneracy factor NL = ( e B / h ) A ,  with 
A = L, L ,  the area of the x-y plane. The resonance frequencies of the energy levels 
(N,  0; Oq) with the energy level (0,O; In) are at oc = [ ( q J N ) ’  - P’]l/’. Figure l(b) 
shows that the resonance frequency of the lowest excited level (1,O; Oq) with the level 
(0,O; Is) at oc = (02 - Pz)1/2 is shifted to much lower values than the corresponding 
resonance frequency oc = 0~ of 3D or Q2D systems if the confinement frequency 0 is 
increased. 

The polaron hybrid frequency hC;;: = EN -  EN-^. defines a polaron cyclotron mass 
m; = ekB[(EN - EN-,)’ - @P)2]-’/2. In experiment the optical transition EO + El is 
mostly used, so that it is common to define the mass for this transition: 

(12) 
AEi - AEo AE1 - A E o  - I r -  

“ “ = [ I + (  me y;i2 )’+’( y2A2 )] . 

Taking the limit of vanishing confinement frequency (0 + 0; y + 1; 1’ + OC/OL) 
we get the well known 2D polaron cyclotron mass: mE = ehB/(EI - E o ) .  The limit of 
vanishing electron-phonon interaction (a --f 0) yield for the Q1D polaron cyclomn mass 
the conduction band-edge mass m;/mc = 1. 

To analyse the polaron cyclotron mass we have to calculate AEo and A E l .  For A EO it 
is possible to perform the sum over the Landau levels exactly by converting the denominator 
of ( I  I ) into an integral. After some simple analytic calculations we obtain from (1 1) 

with 

1 - exp(-h*t) 
[exp(-h.*t) - 1 + h2t](l - y2) ’  

E ( t )  = 

This expression can be expanded in powers of k:: AEo = AEo(0) + AEL(0)k: + . . ., 
and so the magnetopolaron effective mass rir* for motion in the n direction is 3 / m e  = 
(1 +%AE;(O)/h)-’. The magnetopolaron ground-state comction is given to order (k:)O 
by 

where K(c) is the complete elliptical integral of the first kind. 
Now we consider the energy shift of the Landau level N = 1 for k, = 0, which is 

necessary for the calculation of the polaron cyclotron mass m;. Summarizing over all 
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Landau levels N' in (1 I ) ,  A El (0) is again given by an one-dimensional integral 

where K'(f) is the first derivative of the complete elliptical integral of the first kind. Thus 
both interesting energy corrections are given by onedimensional integrals. 

3. Numerical results 

For numerical calculation we have used an InSb MOS structure (InSb CY = 0.0196, 
rp = 10.594nm. EoL = 24.41 meV. me = 0.0139mo) in which the electrons are confined 
within InSb and a nanostructured GaAs-Ga,,AI,As heterostructure (GaAs: a = 0.07, 
rp = 3.987nm, hwL = 36.17meV. me = 0.06624mo) where the electrons are confined 
within GaAs. Because in the experimentally realized structures typically hS2 < 12 meV for 
InSb and RO < 5 meV for GaAs is valid, we always have the possibility of a resonance at 

The calculated energy levels for one electron in different InSb QWW including polaron 
effects are plotted in figure 2. The thin full curves show the unperturbed levels (N, 0; O,), 
the thin broken curve the unperturbed level (0.0; 1,) and the heavy full curves are the 
corresponding perturbed levels. The perturbed levels are obtained from (8), (14) and (15). 
respectively. From figure 2 it is apparent that the perturbed levels, the magnetopolaron 
levels, are shifted to lower energies - AEN(WC = 0) independent of the magnetic field, and 
with increasing magnetic field the state I1,O 0,) mixes strongly with 10.0; lq). becoming 
resonant near the unperturbed level crossing at wc = (0; - S22)'/2. The energy levels are 
repelled from the level (0,O I,) and pinned to the energy fiw f I/ZhGc + AEtSpT in the 
following manner. The levels for which at B = 0 for the energy EN = fiP(N + 1/2) < 
R(l/2Q + WL) is valid, are pinned to this level from the lower energy side. Comparing 
figures 2(a) and 2(h) one can see that with increasing Q of the confinement potential the 
mixing of the levels (0,O I,) and (1,O; Oq) becomes stronger for smaller magnetic fields. 

In cyclotron resonance experiments the transition of electrons between the energy levels 
is observed. Hence, the transition is detected between the plotted magnetopolaron levels 
(perturbed or renormalized levels) of figure 2. The energy difference between the two 
successive Landau levels El - Eo = h& + AE, - AEo is plotted in figure 3 as a 
function of the magnetic field for different InSb and GaAs-Gal-,A1,As Qww. The heavy 
full curves represent the renormalized energy difference and the thin full C U N ~ S  those of 
the unperturbed levels. Because AEI - A& c 0 at B = 0, the energy difference is a 
little bit smaller between the renormalized levels than that between the unperturbed levels. 

W c = ( o L - S 2 )  z z 1/2 . 
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Figure 2. The magnetopolmn levels Eo. E ,  (fhick Full curves) as a function of the magnetic 
field in an lnSb QWW for hSl = 25meV (a) and = l2meV (b). The corresponding 
unperturbed energy levels are ploned by thin full (0.0: 0,), (I, 0: 0,) and bmten (0.0: I,) 
curves. 

The energy difference E ,  - Eo becomes equal to the LO phonon energy h m  in the limit 
B + ca. One can see that for the GaAs-Ga,-,Al,As Q w w  (figure 3@)) the polaronic 
effects are more pronounced than for the InSb QWW (figure 3(u)). This is visible for both 
the decreasing of the transition energy in @e low magnetic field. region and in the resonance 
region wc "  ti 4 7 .  uz - W 

The Q1D polaron cyclotron mass is shown in figure 4. For small magnetic fields ( B  + 0)  
this mass increases with decreasing magnetic fields. The physical reason for this behaviour is 
that, for B + 0, the confinement in the y direction of the structure increasingly results from 
the sample geometry and, hence, the quantum size effFts causes the particle localization. 
This novel effect is absent for 3D and Q2D systems in perpendiculir magnetic fields. In 
these systems the polaron cyclotron mass is only slightly higher than the polaron mass 
for  small but finite magnetic fields, but approaching the polaron mass for B -+ 0. The 
increase of the mass with increasing magnetic field beginning from the minimum is the 
polaron-induced non-parabolicity in the absence of the band non-parabolicity. The strong 
enhancement of the polaron cyclotron mass around oc = 4- is a consequence of 
the pinning of the Landau, level to the energy ~ W L  +hGc/2 + A E:spT. If one compares the 
results for RSFT, W B ~  and IWBPT, figure 4(u), we can conclude that for Q l D  systems the 
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Figure 3. Energy differen& bemeen the energy levels El - Eo for the prturbed states 
(magnetopolaron, thick full CUNCS) and the unperturbed states (electron, thin full curves) for (a) 
an lnSb QW and 9) a GaAs-Gal,AI,As QWW with ha = 2.5 meV and ha = I2meV. 

same differences between the different types of perturbation theories are valid as for 3D and 
Q2D systems [41: RSPT overestimates the contribution of the polaron effects to the polaron 
mass, WBPT underestimates the polaron effects whereas I W B ~  is a good improvement on 
WBFT. 

In figure 4(b) the polaron cyclotron mass is plotted against magnetic field for 
QID magnetopolarons with different confinement energies kQ and for the strict 2D 
magnetopolaron which is the limiting case of E52 = OmeV. This figure clearly shows 
the enhancement of the mass renormalization due to polaron effects in systems with 
reduced dimensionality. It i s  well known [5] that the polaron cyclotron mass of the ZD 

magnetopolaron is larger than that of the 3~ magnetopolaron. Here we have obtained the 
following results: (i) the polaron cyclotron mass of the QID magnetopolaron is larger than 
this of the 2D magnetopolaron and (ii) the polaron cyclotron mass increases with increasing 
confinement energy. 

To understand the increase of the QID polaron cyclotron mass with decreasing magnetic 
fields in the low magnetic field region we look at the denominator of (12). This denominator 
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Figure 4. Polaran cyclotron m a s  of the Q ~ D  magnetopolaron against magnetic field of an InSb 
QWW for ( U )  different types of perturbation theories MET, ~ B P T  and m m  for hQ = 12meV 
and (b) different confinement energies Tzs2 = 12meV and BQ = 2.5meV calculated using 
IWBPT. The curve,' denoted by ID, is the corresponding cyclown mass of a 2D magnetopolamn 
(EO = OmeV). 

has a zero at 

This zero, called the critical cyclotron frequency WE, divides the 0~ - '2 plane in two 
different areas. For a given geometrical confinement frequency S2 and a cyclotron frequency 
oc > WE we can define the usual polaron cyclotron mass mE (12). which is enhanced by the 
geometrical confinement of the Qww. But for smaller cyclotron frequencies oc < I& the 
radicand of the square root in (12) becomes negative, and so this mass definition would not 
result in a real polaron cyclotron mass. Hence, in a cyclotron resonance experiment using 
the optical transition Eo + El  it is only possible to measure the polaron cyclotron mass 
if oc > 0:. For smaller magnetic fields cyclotron resonance cannot be used to investigate 
the polaron cyclotron mass. 

In figure 5 the value of the critical cyclotron frequency WE is plotted against the 
geometrical confinement frequency S2. To get a deeper insight into what happens for smaller 
magnetic fields we expand the difference of the energy shifts AEl(0)  - AEo(0) in second- 
order RSPr, starting from (14) and (E), in a power series of .$ = WC/OJL. In the case of 
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0.0 0.2 0.4 0.0 0.8 

Q / W L  

Figure 5. Cntical cyclotron frequency io; of the QID magnetopolaron against confinement 
frequency s2 of an lnSb Qww calculated with mn. 

t 4 0 we get the following results. For vanishing geometrical confinement frequency s-2 
we obtain 

AEo(0) = - r ~ $ ~ ( l  + 45 + &'+U(:')) 
AEi(0) - AEo(0) = - W g H ( :  + itz + $e3 + 0(t4)) 

(W 
(17b) 

which agrees with the result for the ZD magnetopolaron [3]. But for finite confinement 
frequency R we obtain [I21 

( W  

2 - 5t + 2rZ - (4 - 6t)e-' + (2  - t)e-= 
e-' - 1 + t X 

1 2 - 2t - (4 - 3t + tz)e-' + (2 - t)e-" 
Jt(e-' - 1 + t )  

and 
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where q = R/oL, If one compares (18) with (17) one can see that the functional structure 
of both equations differs appreciably. The basic difference is caused by the occurrence of 
different powers of $. In the case of S2 # 0 the power series contains only even powers 
of C. For 0~ + 0 the difference AE,  - A& vanishes for Q = 0 but remains finite for 
Q # 0. It is obvious that in the limit of small magnetic fields ( B  + 0) the polaron cyclotron 
mass can only result in the polaron mass if the electron-phonon contribution to the energy 
splitting AEg - A& vanishes. But, due to the quantum confinement, this is not the case 
in the Q l D  system. Hence, it is impossible to measure the polaron mass ( B  + 0) in QWW 
using cyclotron resonance. Nevertheless, it is straightfoward but tedious to show that (18) 
approaches (17) including all powers of $ for B --f 0. In the weak magnetic field limit the 
polaron cyclotron mass of (12), using (18), is given by 

(1% 

Under the condition ab0 c 2q. which is valid for small but finite confinement frequencies 
0, one can see that this definitlon of the polaron cyclotron mass does not give a real value. 

mE - 6 - _  
me J - ~ b o ( 2 ?  - Ubo)  ' 

4. Conclusions 

In conclusion, we have calculated the polaron cyclotron mass of Q1D magnetopolarons 
in QWW. Our results are valid for zero temperature and arbitrary magnetic field strength. 
It is shown that the polaron cyclotron mass increases for B + 0 because of the 
electrostatic confinement, different to this mass of the 3 0  and Q2D magnetopolaron in 
perpendicular magnetic fields. Level crossing and following the existence of a resonant 
magnetopolaron arises only under the condition oL > NR and at this magnetic field where. 
wc = [(WL/N)' - R2]'/' is valid. Merkt and Sikorski [8] have shown the possibility 
of producing InSb MOS Q w W  with subband separation energies up to fiQ = 9meV. For 
QWW with those and higher subband separation energies it should be possible to observe in 
experiment the polaronic frequency shift to lower values due to the resonant magnetopolaron 
effect, if one extends the cyclotron resonance measurement to such a magnetic field where 
the level crossing occurs. Further, the unusual increase of the polaron cyclotron mass for 
lower magnetic fields should also be measurable. 

To improve on these results one has to include in the calculation the non-parabolicity 
of the conduction band (the band structure effect), the non-parabolicity of the confinement 
potential, the finite width of the Q w w  in the growth direction and, if many electrons are 
present, occupation and screening effects. 
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